
Sept-Oct 95

Published by the

Software Engineering

Working Group and the

Software Technology

Center to promote

software engineering

education

UCRL-AR-121011-95-

August 15

There was a good turnout in attendance
for GRADY BOOCH, from the
Rational Software Corporation, who
talked about what’s up with Object-
Oriented Methods. See Article on
Page 2.

August 18

A seminar was held by Steve Wong,
Terri Quinn, and Al Leibee to talk
about some of the problems in setting
up a Metrics program, and presented
a possible approach for putting one
together.

 September 18

Don Shilling and Don Rathbun from
Allied Signal Aerospace, Kansas City
Division, spoke about ISO 9000 and
their experiences becoming certified.
Please see the enclosed article on ISO
9000, by Carolyn Owens. For
viewgraphs call the STC office at X3-
8543 or e-mail to stc.llnl.gov.

Upcoming Events Events in Review

STC WWW Pages

External: http://www.llnl.gov/stc/
stc.html

or

Internal: http://www.llnl.gov/llnl_only/
stc/

 Please refer to Al Leibee X2-1665 or
Jennifer Gibson X3-8543 for questions
regarding any STC functions.

 •Grady Booch Summary2

 • Cleanroom Part 2 (reprint) 4

 • Focus on Metrics 5

 • ISO Trip Report 9

 • Local Lab Experts 11

 • Upcoming Conferences 12

Inside this issue:

October 9

Rick Ball, from Richard Ball and
Associates in Canada, will hold a
Maintenance Seminar for 9-12 in
Bldg. 439 Training Room.

October 30 and 31

Roger Bate From SEI in Pittsburgh
will be coming out to give a seminar
on Systems Engineering Capability
Maturity Model and Integrated
Product Development Capability
Maturity Model.

November 9

STC is planning a Testing Tools
expo, hosted by Federal Business
Council will be hosting a Vendor
Demonstration Day, in Bldg. 132
white area.

Software Engineering Newsletter2 of 12

Grady Booch speaks about software development methods
Jeff Young,
X3-8333, jeffyoung@llnl.gov, L-548

Continued on Page 3

there are many companies that have enough resources
to overcome problems by brute force if by nothing
else. Booch calls this the “Microsoft effect” and
defines it as “a company can reach a certain critical
mass beyond which they can buy their way out of a
problem.”

For those projects that decide to use an OO
approach, there are many OO methods to choose
from. These methods include Booch, OMT,
Objectory, Schlaer-Mellor, and Coad/Yourdon, just
to mention a few. By far, the dominate software
development method is called Chaos (heroic
programming). Chaos, however, is not a sustainable
business practice. Methods are important because

“Someone in my
family had the

foresight to spell our
name with tw o o’s”

Grady Booch

If anyone was destined to become well know in
the Object Orientation (OO) field, it was Grady
Booch. Booch, whose name is almost synomonous
with object orientation, spoke to a receptive Lab
audience in August. The formal title of Booch’s talk
was “The Maturation of Object-Oriented Methods,”
but the lecture itself was far from formal. Booch sat
atop a table as he regailed his audience with OO
tales.
OO and C++ : n o silver bullets

To no one’s surprise, Booch stated that the
dominate OO language is C++. However, he pointed
out that he is relieved that the new worldwide air
traffic control software is written in Ada, not C++.
OO is not tied to a specific language,
but rather certain languages facilitate
OO development and all languages
have their downside. Writing in
C++ does not make you object
oriented, Booch declared.

Booch cited an example of a
shop that had programed in C++ for
years, and they bragged about it. Then, when they
were looking at Rational’s tools, they asked that
their code be analyzed. As they handed the diskette
over, they asked “Do there have to be any classes for
the analysis to work?” In another example, Booch
discussed how a similar shop had exactly one method
per class, i.e., something akin to “do it”.

Booch has seen large projects succeed and fail
with OO. The largest successful OO project, he
reports, had nearly 10,000 classes. However, the
success or failure rate tends to depend upon aspects
other than the analysis and design method. For
example, Booch recalled a failure that probably had
more to do with the 8,000-page-requirements
specification than with any design method. Some of
the characteristics he has observed in failed projects
include: requirements that are out of control, software
with no sense of architecture, and computers with
configuration management problems.

There are many problems that a project can
encounter that can put the project at risk. However,

“methods help us mitigate the
Microsoft effect.”
The new method

While there are many
methods, these methods have
been converging with similar
concepts and processes. Now,
Booch and Rumbaugh (a

principal author of the OMT method) have decided
to go in the same direction Rather than pursuing the
same concepts independently, and coming up with
similar but still different methods, they are merging
and to gain the benefits of a unified notation.

The new notation will use rectangles for classes
and structured clouds for objects; it will be unveiled
(version 0.8) at OOPSLA (spell out) this month. The
unified methodology will have the visual abstractions
necessary to model distributed and concurrent
systems. Next spring is the target date for releasing
version 1.0, at which time they plan to seek
standardization.

New systems tend to be large distributed systems.
Concurrency is also coming into play: new systems
are moving away from the mainframe and PC
environments to environments where the “network
is the computer”. Booch and Rumbaugh are working
on the visual abstractions necessary to model
distributed and concurrent systems.

3 of 12

Continued from page 2

Grady Booch speaks about software development methods

Design patterns

Booch asked the audience “Who is developing
OO systems?” Surprisingly, only a small percentage
of the audience responded. (Are we shy or is this an
indication that OO designs are not commonplace at
LLNL?). Booch then started an OO bidding war by
asking who has the system with the most classes.
The responses trickled in...10...40...500! The
winning respondent was Joann Matone of the
Conflict Simulation Lab. He then asked Joann what
are the top lessons they learned:

• NEVER trust your first class
• Keep your code out of your class definitions
Booch agreed with both of these. Then he

described the 100-200 class boundary where classes
do not seem to be sufficient (though they are still
necessary). Booch says that for large well structured
OO programs the behavior of the system transcends
classes. This transcending behavior shows up in
class clusters or patterns. There are three categories
of patterns: idioms, mechanisms, and frameworks.
Idioms are patterns close to the language, like a
dialect. Idioms are usually handled in style guides.
Mechanisms are a collaboration of architectures.
His example here was a blackboard system where
knowledge sources use their growing knowledge on
the blackboard to add their solution. Finally,
frameworks are for projects that will be decades
long. Frameworks are micro architectures made up
of a set of classes and architectures. He gave an
example of a company that developed their
frameworks up front and now they get 60-70%
reuse (without modifications) which allows them to
be responsive to requirements changes, thereby
becoming a leader their market.
Scenarios

Another powerful technique of object oriented
analysis and design are scenarios or use cases as
described by Jacobsen. Use cases allow you to
articulate scenarios that wind their way through the
system. Use cases are ways to use the system as
expressed by the users, and, therefore, provide a
means to communicate with real users of the system.

The output of a use case analysis is a set of scripts as
to how the system will be used. In each use case you
will find multiple scenarios: primary scenarios and
secondary scenarios.

According to Booch, it’s easy to find about 70%
of your objects in analysis with use cases: you pick
the important use cases and their primary scenarios.
The next 25% of your objects are found in the
architectural design phase. The last 5%, he said, are
found in maintenance. The discovery of the final few
classes in maintenance can have a positive effect on
the overall system.

LOC

Time

FIGURE 1.

By adding additional classes it allows you to see
the patterns and bring the application together in a
way that simplifies the design. Hyper-productive
organizations achieve this effect and actually reduce
the size of their code (see figure 1). A counter
example is Microsoft, where they build their software
almost every night. In this case, if a developers
changes break the build they are under pressure to
correct it before the next build. That kind of
environment is not conducive to making simplifying
changes. In response to a question from the audience,
Booch indicated that Rational builds their software
about once a week.
Questions From The Audience

• What metrics are there to show a greater or
lessor object design? Booch has his own
metrics.

• How many classes in the system. He has a
heuristic about how many classes per day a

 More questions from the audience answered on page 4

Software Engineering Newsletter4 of 12

Why Isn’t Cleanroom the Universal Software Development
Methodology? (Part Two)
Reprinted from CrossTalk vol 8 No. 5, Reprinted with Permission
Johnnie Henderson, Software Technology Support Center
801-777-8057 DSN 777-8057
Internet: hendersj@software.hill.af.mil

Editor’s note: We have broken this article into two parts.

Part two follows; part one was published in the July - Aug.

issue of this newsletter. We kept all the content but we

rearranged it for publication. Part two reprints the

introduction and adds the section “Unit Testing Vs.

Correctness Verification and Statistical Quality Control”

which was in the middle of the original article.

Introduction
Cleanroom—a methodology that promises much

lower error rates, higher productivity, and delivery of
software on schedule and within budget—sounds
like the proverbial “silver bullet” that the industry is
looking for. Why hasn’t it caught on and spread like
wildfire? There are three basic reasons:
1. A belief that the Cleanroom methodology is too

theoretical, too mathematical, and too radical
for use in real software development.

2. It advocates no unit testing by developers but
instead replaces it with correctness verification
and statistical quality control—concepts that
represent a major departure from the way most
software is developed today.

3. The maturity of the software development
industry. The use of Cleanroom processes
requires rigorous application of defined
processes in all lifecycle phases. Since most of
the industry is still operating at the ad hoc level
(as defined by the Software Engineering Institute
Capability Maturity Model), the industry has
not been ready to apply those techniques.

What does the experience in using Cleanroom
say about whether or not these are valid concerns?
This article attempts to answer that question.

Unit Testing Vs. Correctness Verification and
Statistical Quality Control

Continued on page 8..

The fundamental approach to verification as
espoused by Cleanroom is aimed at introducing
mathematical reasoning, not mathematical notation
into the verification process. The principal
motivation is to provide a rigorous methodology
for software development and to provide a firm
foundation as an engineering discipline.
Mathematical verification of programs is done by
using a few basic control structures and defining
proofs following rules specified in a correctness
theorem. The proof strategy is divided into small
parts that easily accumulate into proof for a large
software system [4].

The method of human mathematical
verification used in Cleanroom is called functional
verification. Functional verification is organized
around correctness proofs, which are defined for
the design constructs used in a software design.
Using this type of functional verification, the
verification problem changes from one with an
infinite number of combinations to consider to a
finite process because the correctness theorem
defines the required number of conditions that
must be verified for each design construct used. It
reduces software verification to ordinary
mathematical reasoning about sets and functions
[5]. The objective is to develop designs in concert
with associated correctness proofs. Designs are
created with the objective of being easy to verify.
A rule of thumb followed is that when designs
become difficult to verify they should be redone for
simplicity [1,2].

Statistical quality control is used when you
have too many items to test all of them exhaustively.
Instead, you statistically sample and analyze some
items and scientifically assess the quality of all of
the items through extrapolation. This technique is
widely used in manufacturing in which items in a
production line are sampled, the quality is measured,
then sample quality is extrapolated to the entire

5 of 12

Focus on Metrics: Measurement and Software Management
Al Leibee, Leibee1@llnl.gov,
Ext. 2-1665, L-307

person can develop.

• How the classes are clustered

• The size and shape of the inheritance tree.
His guidelines are 5±2 deep and 7±2 wide.

• Complexity (McCabe). He wants to see a bell
curve; look at the bumps

• Stability. Groups of classes changing
together is good. If changes are ad hoc across
unrelated classes its a symptom of design rot.

• Can you go too far with OO? Yes. You can
over architect in which case you tend NOT to
do use cases. Your classes are too big. Need
to get a tiger team to seek out patterns and
expose them.

• When should you start your Graphical User
Interface (GUI) design? The relative risk to

the system due to the GUI determine when you
start. If your application is heavily dependent
on the GUI then you must start right away. He
recommends, in general, that you start your
GUI when you are doing your analysis (in the
first month) and that you keep your
architecture separate from your GUI. The GUI
is a projection on the domain model. Further,
he recommends using a human factors person.
Visual Basic and Smalltalk could be used to
build prototypes so you can expose your users
early and get social buy-in.

• OO Databases and Relational distributed
databases, what’s the best to use? If you have
a domain model with tight semantic coupling
across objects then use an OODBMS.
Otherwise, use an RDBMS with a thin layer on
top.

Continued from page 3

Grady Booch speaks about software development methods

project can then use these models to plan, manage,
and improve its software development. Quantified
understanding might include knowing:

• The size of the products.

• The effort spent in the life cycle activities.

• How resources are allocated and used
throughout the life cycle.

• What types of errors and enhancements
are typically made.

• How many defects are corrected.
The derived models can then be used to address

day-to-day questions such as:

• How long will it take to complete testing?
• Can the schedule be compressed by adding

staff?
• Is reliability a function of testing time?
The following table shows some possible areas

of understanding and their associated measurements.

The Software Engineering Laboratory (SEL) at
NASA’s Goddard Space Flight Center has been
studying and applying various software measurement
techniques since 1976. Over this period of time, the
SEL itself has collected and analyzed measurement
data from more 100 flight dynamics projects ranging
in size from 10,000 to 1,000,000 source lines of
code. This data has been used to generate models
and relationships that are used in managing software
development. The SEL has also produced a Software
Measurement Guidebook (SEL-94-002, July 1994)
which is aimed at helping projects begin or improve
a measurement program. In this article, I summarize
from the Guidebook the relationships between
measurement and software management.

An understanding of a project’s processes- what
it does and how it does it, is required for planning,
managing, and improving those processes. A
quantified understanding through measurement of a
project’s software processes and products lets the
project derive models of those processes. The

Continued on page 6

Software Engineering Newsletter6 of 12

Focus on Metrics: Measurement and Software Management
Continued from page 5

Associated Measurements

Distribution of effort over development activities
Typical cost per line of code
Cost of maintenance
Hours spent on documentation
Computer resources required

Amount of rework expected
Number and classes of errors found during
development or maintenance

How and when defects are found

Number and classes of defects found in
specifications

Pass/fail rates for integration and system testing
Typical rate of growth of source code during
development

Typical rate of change of source code during
development or maintenance
Total number of lines of code produced

Schedule as a function of software size
Cost as a function of size
Total number of pages of documentation produced
Average staff size

Understanding Area
The cost (resource) characteristics

of software

The defect characteristics of
software

The rate of source code production

Relationship between amount of
software to be developed
and the duration of the
project and the effort
expended

The relationship between
estimated software size and
other key attributes

Many NASA programs have applied this
strategy of using measurement to establish a
quantified understanding of processes and products
to derive models . One NASA organization collected
and analyzed data on the distribution of 200 staff-
years effort over development activities on 25
projects to build the following effort distribution
model:

Design Activities: 23% of total effort

Coding Activities: 21% of total effort
Testing Activities: 30% of total effort
Other activities: 26% of total effort
(training, meetings, travel)

Managers can use this model to estimate the
effort required for a particular phase. For example,
if the actual amount of time spent in Design and
Coding were 200 staff-hours, then Testing would be
estimated at 200 * 30 /(23 + 21) = 136 staff-hours.

Continued on page 7

7 of 12

A new project could use this model and an
estimate of KSLOC to estimate the other parameters.
For example, if the estimated KSLOC were 100,
then estimated

Effort = 135 staff-months
Duration = 15 months
Pages of Documentation = 2,514
Average Staff Size = 8-9 persons

All of the above data were collected on NASA
projects of similar characteristic. The groups within
NASA doing similar work, under similar conditions
can use these numbers reliably. Others will need to
collect their own data to estimate their effort, size,
etc.

Note that maintenance effort is not
included in this model.

NASA also developed the
following defect distribution model
by collecting and classifying 10,000
errors over a period of 5 years from a
large sample of NASA projects:

Logic/Control Defects: 16%
Computation Defects: 15%
Data Defects: 30%
Initialization Defects: 15%
Interface Defects: 24%

With an environment-specific
defect distribution model, defect-
finding activities such as
Walkthroughs can be focused on
specific types.

NASA also developed a model
of the typical growth of source code
during development by collecting the

Design Code/Test
System

Test
Acceptance

Test
100

90

80

70

60

50

40

30

20

10

10 20 30 40 50 60 70 80 90 100

%
 o

f
T

ot
al

 S
L

O
C

% of Schedule

Note: SLOC, Source Lines of Code

FIGURE 1: GROWTH RATE OF SOURCE

rate at which source code was added to a project’s
controlled library for more than 20 projects. These
projects followed the waterfall development life
cycle. Figure 1 depicts the typical growth rate:

Continued from page 6

Focus on Metrics: Measurement and Software Management

This model can be used by new projects to see
if the project is progressing as expected or if the
schedule is reasonable.

NASA also collected data to derive the
following relationships between product parameters
such as KSLOC (thousand source lines of code) and
process parameters such as effort:

Effort (in staff-months) =1.48 *(KSLOC)0.98

Duration (in months) = 4.6 * (KSLOC)0.26

Pages of Documentation = 34.7 * (KSLOC)0.93

Annual Maintenance Cost= 0.12 * (Development
Cost)

Average Staff Size = 0.24 * (Effort)0.73

Software Engineering Newsletter8 of 12

Why Isn’t Cleanroom the Universal Software Development
Methodology? (Part Two)

production line, and flaws are corrected if the quality
is not as expected.

For software, this notion has been evolved so
that you perform statistical usage testing—testing
the software the way the users intend to use it. This
is accomplished by defining usage probability
distributions that identify usage patterns and
scenarios with their probability of occurrence. Tests
are derived that are generated based on the usage
probability distributions. System reliability is
predicted based on analysis of the test results using
a formal reliability model, such as mean-time-to-
failure [3].

The underlying concern is that random,
statistical-based testing will not provide sufficient
coverage to ensure a reliable product is delivered to
the customer. The coverage concern stems from a
misapprehension that statistical implies haphazard,
large, and costly and that critical software
requirements, which may be statistically
insignificant, are overlooked or untested. Coverage
is directly related to the robustness of the usage
probability distributions that control the selection
process and has not proven to be a problem in current
applications of the methods. In a study performed
by Dyer on the level of requirements coverage using
statistical testing, 100 percent of the high-level
requirements were covered, 90 percent of the
subcomponent-level requirements were covered, and
approximately 80 percent of all requirements were
covered [3].

The Cleanroom method asserts that statistical
usage testing is many times more efficient than
traditional coverage testing in improving the
reliability of software. Statistical testing, which
tends to find errors in the same order as their
seriousness (from a user’s point of view), will uncover
failures several times more effectively than by
randomly finding errors without regard to their
seriousness. The basis for software reliability starts
with the definition of a statistical model, generally

based on the concept that input data comes in at
random times and with random contents. With
defined initial conditions, any such fixed use is
distinguishable from any other use. These uses can
be assembled into a sequence of uses, and the
collection identified as a stochastic process subject
to evaluation using statistical methods.

Coverage testing is anecdotal and can only
provide confidence about the specific paths tested.
No assessment can be made about the paths not
tested. Because usage testing exercises the software
the way the users intend to use it, high-frequency
errors tend to be found early. For this reason,
statistical usage testing is more effective at improving
software reliability than is coverage testing. Coverage
testing is as likely to find a rare execution failure as
it is to find a frequent one. If the goal of a testing
program is to maximize the expected mean-time-to-
failure, hence the reliability of the system, a strategy
that concentrates on failures that occur more
frequently is more effective than one that has an
equal probability of finding high- and low-frequency
failures [6].

Human functional verification has proven to be
surprisingly synergistic with statistical testing
according to Mills, Dyer, and Linger [4].
Experimental data from projects where both
Cleanroom verification and more traditional
debugging techniques were used show that the
Cleanroom-verified software exhibited fewer errors
injected. Those errors were less severe (possibly
attributable to the philosophy of design
simplification) and required less time to fix [1,2].

For more information about the author, please
refer to part one of this article in the July - Aug. issue
of this newsletter.

References on page 9

Continued from page 4

9 of 12

ISO Registration for Software and System Providers - A Trip Report
(or More Than You’ll Ever Want to Know About ISO 9001)
Carolyn Owens

“Do what you say, say what you do, and
document, document, document!” is apparently what
many people think the ISO 9000 series standards
require. According to the instructors of the three day
U.C. Berkeley Extension class on ISO Registration
for Software and System Providers, this thinking is
incorrect. An organization’s business practices must
comply with the ISO standard and documentation
should sufficiently and effectively support these
business practices.

An Overview of ISO 9000

Contrary to the belief that ISO is an acronym, it
is the name of the International Organization for
Standardization, a world wide federation of national
standards bodies and comes from the Greek word
“isos” meaning equal. ISO 9000 is a series of
standards dealing with quality systems, with ISO
9001 being the most comprehensive. That is:

° ISO 9001 covers Product, Design,
Development, Production, Installation and
Servicing

° ISO 9002 covers Production, Installation
and Servicing

° ISO 9003 covers Final Inspection and
Test

Since ISO 9001 covers product design and
development, it is the standard that is applied to
software. As the process of developing and
maintaining software is significantly different from
other types of products, ISO produced the guidance

document ISO 9000-3, (or ISO 9000 part 3)
Guidelines for the application of ISO 9001 to the
development, supply and maintenance of software.
However, a problem exists in that the ISO 9001
standard was originally written in 1987 and revised
in 1994 and the ISO 9000-3 was written in 1991
referencing the ISO 9001:1987. So there are some
discrepancies. To get around these discrepancies,
the class instructors advised us to become familiar
with ISO 9000-3 but to work from ISO 9001:1994,
as our organizations would be audited to this standard
in seeking ISO 9001 registration.

According to the class instructors, the objectives
of ISO 9000 are to specify a single set of quality
system requirements for “all products, all processes,
all industries, and all countries”. They also pointed
out that these standards are “common sense and
good business practices”. The primary reason why
so many organizations are seeking ISO registration
is the market place is requiring it, particularly in
Europe. Other reasons include gaining a competitive
edge and improving the organization’s internal
quality.

An Overview of ISO 9000 Registration

ISO 9000 registration involves an organization
hiring an accredited registrar to perform an ISO
9000 registration audit. (Note: Each country may
have its own accreditation board and registrars
accredited by that board. So an American firm may
use a registrar accredited in the U.S. or one accredited
by another country. The choice is usually market
driven, that is, where does the firm plan to sell its

References to Why Isn’t Cleanroom the Universal Software Development Methodology?
1. Linger, R.C., “Cleanroom Process Model,” IEEE Software, March 1994., pp. 50-58.
2. Hausler, P.A., R.C. Linger, and C.J. Trammel, “Adopting Cleanroom Software Engineering with a Phased Approach,” IBM Systems

Journal, Vol. 33, No.1, 1994, pp. 89-109.
3. Dyer, M., The Cleanroom Approach to Quality Software Development, John Wiley & Sons, Inc., New York (1992).
4. Mills, H.D., M. Dyer, and R.C. Linger, “Cleanroom Software Engineering,” IEEE Software, September 1987, pp. 19-24.
5. Dyer, M., and A. Kouchakdjian, “Correctness Verification: Alternative to Structural Software Testing,” Information and Software

Technology, January/February 1990, pp. 53-59.
6. Cobb, R.C., and H.D. Mills, “Engineering Software under Statistical Quality Control,” IEEE Software, November 1990, pp. 44-54.

Continued on page 10

Software Engineering Newsletter10 of 12

Continued from page 9

ISO Registration for Software and System Providers - A Trip Report
(or More Than You’ll Ever Want to Know About ISO 9001)

products? The registrar audits the organization’s
business systems to verify that they comply with
ISO 9001 (or ISO 9002, or ISO 9003, depending on
which ISO registration the organization is seeking)
and that they are effective, i.e. implemented.

After receiving the initial ISO registration, the
organization must be re-audited by the registrar
every 6 months in order to maintain its ISO
registration. The class instructors stated that “ISO
registration is more difficult to maintain than it is to
obtain”.

Preparing for ISO Registration

There are five steps to preparing for ISO
registration. These steps should look very familiar
to software developers. Here is a brief summary of
each step.

1. Define the Requirements.

Management must decide on the objectives and
goals for the ISO registration process. This should
include producing a project plan which addresses
the schedule, budget, and resource issues.

2. Design and Develop the Organization’s
Policies and Procedures.

The primary objective for documentation is to
effectively communicate the organization’s values,
goals, objectives, plans, policies, and procedures to
all members of the organization. An additional
objective is to obtain a corporate memory (e.g.
records, logs, etc.). This documentation should be
effective, efficient, and dynamic. It should also be
concise (Note: The class instructors recommend
erring on the side of too little rather than too much.)
and reviewed and iterated upon.

One technique to aid organizations in developing
procedures is to use a technique called process
mapping. This is a visual summary of a process that
helps provide understanding of the process. It also
identifies opportunities for process improvement.
Techniques such as data flow diagrams, flow charts
and deployment charts can be used for process
mapping.

A key piece of documentation that must exist
for ISO registration is the quality manual. ISO
provides in depth guidance as to what should be
included in the quality manual, but essentially it
must include a summary of the organization’s
interpretation of ISO 9000; the organization’s quality
policy statement; the organization’s policies and
procedures including the mission statement with
reference to specific goals, the organization’s
structure including major activities and
responsibilities, corrective action procedures such
as internal audits, customer feedback mechanisms,
and reviews and evaluation procedures or pointers
to other documentation containing the above
information.

3. Test and Review.

During this step the documentation produced
during step 2 is tested in the actual work environment
using members of the organization who have not
been involved in the design and development phase.
Testing ensures that the training and necessary
support is adequate to achieve successful
implementation of the procedures.

4. Implementation

This is the actual roll out of the policies and
procedures to the whole organization. Throughout
this initial roll out there should be observation,
monitoring and support provided to update and
improve the documentation.

5. Implementation Review.

This is the final wrap-up meeting when lessons
learned and opportunities for improvement can be
documented.

The final emphasis of the class was on
management’s commitment to ISO implementation
and the selection of the implementation project
manager. The success of any project depends on
management support, good project leadership and
project planning. These are also the keys to success
for a software organization to achieve ISO 9000
certification.

11 of 12

Reviews and Walkthroughs
Carmen Parrish
Warren Persons, 2-3349
Jeff Young
Carolyn Owens

Performance, Reliability & Safety
Dennis Lawrence, 3-7828

Reverse Engineering
Jeff Young
Al Leibee

Requirements Modeling/OOD
Debbie Sparkman, 2-1855

Testing
Warren Persons, 2-3349
Nancy Storch, 2-8942
Al Leibee

Software Quality Assurance
Warren Persons, 2-3349

CASE Tools
Suzanne Pawlowski
Jeff Young

Configuration Management
Al Leibee
Carmen Parrish

Project Estimation/Management
Howard Guyer
Carolyn Owens

JAD/FIND
Candy Wolfe

If you need consulting help with a
project involving software
engineering, consider contacting
one of the local LLNL experts.

Software Engineering
Working Group:

Bill Aimonetti, 3-2678

Bill Buckley, 3-4581,

Bob Corey, 3-3271

Antonia Garcia, 3-9884

Howard Guyer, 3-7671

Al Leibee, 2-1665

Judith Littleton, 3-4403

Donna Nowell, 2-1515

Jerry Owens, 2-1646

Carolyn Owens, 3-6085

Carmen Parrish, 2-9810

Suzanne Pawlowski, 3-0115

Frank Ploof, 2-6990

Terri Quinn, 3-2385

Denise Sumikawa, 2-1831

John Tannahill, 3-3514

Booker Thomas, 3-8800

Ernie Vosti, 3-0604

Jeff Young, 3-8333

Bill Warren, 2-5331

Candy Wolfe, 2-1863

The SEWG meetings are normally held the 1st and 3rd Thursday of each
month at 3:00 p.m., in Bldg. 218, R114. The next meeting will be Thursday
October 19.

Local Lab experts offer advice, expertise

Software Engineering Newsletter12 of 12

October

30-3 C++ World Users Conference and Exhibition
Fairmont Hotel
Chicago, IL
To register call (212) 242-7515
WWW: http://www.sigs.com/

November
6-8 Current Success & Future Directions

The 4th SEI Conference on Software Risk
Monterey, CA
To Register call (412) 268-5800
WWW: http://www.sei.cmu.edu

29-30 Twentieth Annual
Software Engineering Workshop
NASA Goddard Space Flight Center
Greenbelt, Maryland
To register call (301) 286-6347
WWW: http://fdd.gsfc.nasa.gov/seltext.html

For current information about Software
Engineering Institute Events: WWW: http://
www.sei.cmu.edu/SEI/events/SEI_cal_events.html

Upcoming Seminars
and Conferences Software Engineering Newsletter Staff

Technical Editors:
Jeff Young,
(510) 423-8333, L-548, jeffyoung@llnl.gov

Al Leibee,
(510) 422-1665, L-307, leibee1@llnl.gov

Newsletter Compositors & Designers:
Jennifer Gibson,
(510) 423-8543, L-307, jlgibson@llnl.gov

General Information or article submission:
(510) 423-8543, stc@llnl.gov

To subscribe or unsubscribe to this
newsletter : (510) 423-8543,

stc@llnl.gov

NOTICE

This document was prepared as an account of work sponsored by

an agency of the United States Government. Neither the United

States Government, Lawrence Livermore National Laboratory,

nor the University of California nor any of their employees, makes

any warranty, express or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights.

Reference herein to any specific commercial products,

process, or service by trade name, trademark, manufacturer, or

otherwise, does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government or

the University of California. The views and opinions of authors

expressed herein do not necessarily state or reflect those of the

United States Government or the University of California, and

shall not be used for advertising, product endorsement or

commercial purposes. This work was performed under the auspices

of the U.S. Dept. of Energy at LLNL under contract no. W-7405-

Eng-48.

 UCRL-AR-121011-95-9/10

